Strong Non-Split Domination in Directed Graphs
نویسندگان
چکیده
The concept of connectedness plays an important role in many networks. Digraphs are considered as an excellent modeling tool and are used to model many types of relations amongst any physical situations. In this paper the concept of strong non-split domination in directed graph D has been introduced by considering the dominating set S is a strong non-split dominating set if the complement of S is complete A dominating set S of a directed graph D is a strong non-split dominating set if the induced subdigraph is complete. The minimum cardinality of strong non-split dominating set is denoted by ) (D sns γ . In this paper, the domination parameters corresponding to strong non-split domination in digraphs has been analyzed in various types of digraphs and obtained several results on these parameters.
منابع مشابه
On independent domination numbers of grid and toroidal grid directed graphs
A subset $S$ of vertex set $V(D)$ is an {em indpendent dominating set} of $D$ if $S$ is both an independent and a dominating set of $D$. The {em indpendent domination number}, $i(D)$ is the cardinality of the smallest independent dominating set of $D$. In this paper we calculate the independent domination number of the { em cartesian product} of two {em directed paths} $P_m$ and $P_n$ for arbi...
متن کاملTwin minus domination in directed graphs
Let $D=(V,A)$ be a finite simple directed graph. A function$f:Vlongrightarrow {-1,0,1}$ is called a twin minus dominatingfunction (TMDF) if $f(N^-[v])ge 1$ and $f(N^+[v])ge 1$ for eachvertex $vin V$. The twin minus domination number of $D$ is$gamma_{-}^*(D)=min{w(f)mid f mbox{ is a TMDF of } D}$. Inthis paper, we initiate the study of twin minus domination numbersin digraphs and present some lo...
متن کاملIndependent domination in directed graphs
In this paper we initialize the study of independent domination in directed graphs. We show that an independent dominating set of an orientation of a graph is also an independent dominating set of the underlying graph, but that the converse is not true in general. We then prove existence and uniqueness theorems for several classes of digraphs including orientations of complete graphs, paths, tr...
متن کاملStrong non split r-domination number of a graph
In this paper, we define the notions of inverse strong non-split r-dominating set and inverse strong non-split r-domination number γ′snsr(G) of a graph G. We characterize graphs for which γsnsr(G) + γ′snsr(G) = n, where γsnsr(G) is the strong non-split r-domination number of G. We get many bounds on γ′snsr(G). Nordhaus-Gaddum type results are also obtained for this new parameter.
متن کاملDirected domination in oriented hypergraphs
ErdH{o}s [On Sch"utte problem, Math. Gaz. 47 (1963)] proved that every tournament on $n$ vertices has a directed dominating set of at most $log (n+1)$ vertices, where $log$ is the logarithm to base $2$. He also showed that there is a tournament on $n$ vertices with no directed domination set of cardinality less than $log n - 2 log log n + 1$. This notion of directed domination number has been g...
متن کامل